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ABSTRACT

Post-earthquake housing reconstruction faces a key challenge: damage assessments are reported
gradually over time, while conventional scheduling methods assume that complete information is
available at the start. This discrepancy can lead to inefficient resource allocation and delays in
recovery. We introduce PyRebuild, a Python-based simulation framework that models the
temporal dynamics of damage report arrivals and dynamically allocates reconstruction resources.
The framework tests three scheduling algorithms (Longest Job First, Shortest Job First, and
random assignment) under static and dynamic conditions. Using 2018 Lombok earthquake data,
we find dynamic scheduling yields lower Root Mean Square Error between predicted and
observed recovery timelines in five of seven regions, while static methods perform marginally
better in two regions. Results indicate optimal scheduling depends on local damage patterns,
highlighting the need for adaptive post-disaster reconstruction strategies.

INTRODUCTION

Rebuilding after an earthquake is challenging because damage assessments are received
gradually over weeks or months rather than all at once. Traditional scheduling methods assume
that complete information is available immediately, which may lead to suboptimal resource
allocation and delays in recovery. This issue is particularly important since housing
reconstruction represents about 50% of total disaster-related losses (Comerio 2014).

Resource Allocation Fundamentals. Resource allocation methods in post-disaster
reconstruction can be divided into static and dynamic approaches Lawrence and Sewell (1997).
Static methods assume that all damage data is available at the outset and assign contractors
accordingly, whereas dynamic methods update these assignments as new damage reports arrive.
Dynamic scheduling is vital in real disasters, where both damage information and resource
availability evolve over time.

Static vs. Dynamic Approaches. Traditional planning tools, such as HAZUS, illustrate the
limitations of static methods Federal Emergency Management Agency (2010). While static
scheduling is straightforward, it lacks flexibility when new reports emerge. In contrast, dynamic
scheduling updates priorities in real time, an approach that has proven effective in domains such
as manufacturing and healthcare Pinedo (2012); Green et al. (2004). Recent studies indicate that
prioritizing major damage repairs using dynamic methods can lead to improved recovery
outcomes Alisjahbana and Kiremidjian (2021); Wang et al. (2023).



Dynamic Scheduling and Demand-Supply Perspectives. Frameworks like Re-CoDeS and iRe-
CoDeS have applied a demand-supply approach to balance repair needs with available resources
Rahman et al. (2018); Suryanto et al. (2022). In PyRebuild, we simulate the gradual arrival of
damage assessments and the dynamic allocation of contractors, building on these demand-supply
concepts to support adaptive scheduling strategies. This review of existing literature underscores
the potential of adaptive approaches and motivates our comparison of static and dynamic
methods as a step toward more sophisticated, real-time policy adaptation.

Frameworks such as iRe-CoDeS (Suryanto et al. 2022) and Re-CoDeS (Rahman et al.
2018) adopt a demand-supply approach to quantify disaster resilience by modeling recovery as a
time-stepping process, where the interaction between resource demand and available supply is
assessed at each step. While iRe-CoDeS evaluates community recovery and Re-CoDeS
aggregates resilience indicators for civil infrastructure, both frameworks assume that the
necessary data are provided in an aggregated form rather than arriving incrementally. In contrast,
PyRebuild extends these approaches by simulating the gradual, phased arrival of damage
assessments and dynamically allocating reconstruction resources at each time step.

In this paper, we introduce PyRebuild, a simulator that updates scheduling priorities as
new damage reports are received. We compare static scheduling (assuming complete data) with
dynamic scheduling (updating as data arrives) to assess their impact on reconstruction timeline
predictions. Our research framework is designed to simulate recorded recovery trajectories as
accurately as possible, thereby providing a benchmark for evaluating scheduling strategies. By
calibrating our simulation with real-world data, we can quantify discrepancies between simulated
and observed outcomes. These insights lay the groundwork for future enhancements, particularly
through the incorporation of reinforcement learning techniques to dynamically adapt scheduling
policies in real time.

PROBLEM SETTING

The reconstruction problem after an earthquake requires that contractors be assigned as damage

assessments are reported. Unlike static methods—which assume complete data and do not update

assignments when new reports arrive—our approach continuously adjusts the queue based on

incoming information (i.e., quantity and severity of incoming houses).

Input Data and Parameters. Let i € N index the set of damaged buildings. Each building is
represented by the vector (d, r, t) where:

e d € {0,1,2} is the damage state (0 = minor, 1 = moderate, 2 = major),

e 7€ {l,...,R} is the region identifier (with R being the total number of regions),

e tis the time at which the damage assessment is reported.

We model the damage arrivals using a lognormal distribution. We use parameters p = 100
days and o = 0.3 to capture this skewed behavior, which is supported by previous works.
Damage reporting times are shaped by factors like severity, accessibility, and administrative
delays, which together create a right-skewed pattern well-represented by a lognormal
distribution—where most reports arrive early, and a few are substantially delayed.

Resource Constraints. Each region r has a fixed pool of contractors C,, Each contractor works
on one building at a time, and a pre-construction administrative phase must be completed before
construction begins. Once assigned, a contractor remains engaged until the building is fully
repaired. The total number of contractors C,remains constant throughout the process.



Dynamic Event Processing and Queue Management. For each region r, a priority queue Qr
manages contractor assignments. This queue is updated based on the selected scheduling policy
as new damage assessments are processed.

Batch Arrival. Our simulation assumes that damage assessments are reported in three batches,
with a 30-40-30 split (i.e., 30% at t=0, 40% at t=60 days, and 30% at t=120 days). This
assumption is guided by operational recommendations such as FEMA's Preliminary Damage
Assessment Guide and studies on rapid damage assessment workflows. Although actual
reporting may vary due to local practices or event severity, this split serves as a useful baseline.
Likewise, the chosen lognormal parameters reflect average behavior observed in the Lombok
data, though local differences may exist. Future work could refine these parameters for specific
regions.

Dynamic Priority Updates and Contractor Allocation. The system recalculates priorities for
buildings in Qr at fixed intervals or when repairs are completed, reordering the queue. When a
contractor becomes available, the highest-priority building is selected for repair.

PYREBUILD SIMULATOR

PyRebuild is a discrete event simulation tool that dynamically allocates contractors during post-
disaster reconstruction. Built on the SimPy framework, the simulator updates contractor
assignments as new damage assessments are reported.

Architecture Overview. The simulator consists of three main components:

e Region Management: The Region class uses SimPy's PriorityResource to manage a fixed
pool of contractors (Cr) and track repair completion times.

o Building Recovery Process: Each building undergoes a pre-construction administrative
delay and an active construction phase, both modeled using lognormal distributions with
damage-specific parameters.

e Policy Implementation: The simulator implements three scheduling strategies—Longest
Job First (LJF), Shortest Job First (SJF), and Random Assignment—and tests them under
static and dynamic conditions.

Processing Workflow

..........

................

.............



Figure 1 Flowchart of PyRebuild. The diagram illustrates PyRebuild's process from initial
damage assessment through completion, including dynamic resource allocation and
ongoing monitoring.
Figure 1 illustrates the workflow in PyRebuild. The simulation begins by initializing key
parameters—for instance, 100 damaged houses and a pool of 20 construction workers.

In the static approach, all damage reports are assumed available at day 0. The simulator
assigns contractors based on a predefined rule, such as Longest Job First (LJF) or Shortest Job
First (SJF), and work proceeds accordingly.

In the dynamic approach, damage reports arrive in batches: 30% on day 0, 40% at day
60, and 30% at day 120. As new reports arrive and contractors become available, the system
reprioritizes and assigns the next house based on the current scheduling policy.

Each house goes through a pre-construction delay (administrative processing) and an
active construction phase, both modeled using lognormal distributions. Once completed, the
contractor is released to take on a new assignment.

The simulation runs until all houses are completed or a time cap (e.g., 600 days) is
reached. Throughout, performance is evaluated by comparing simulated recovery trajectories to
observed data using metrics like RMSE.

Batch Generation and Arrival Processing. For each region r, damaged buildings are divided
into k batches. The first batch arrives at t = 0, with subsequent batches arriving according to a
lognormal distribution. Each batch is integrated into the priority queue Qr with unique identifiers
and recorded damage levels.

Arrival Pattern. This session uses Mataram as an example to show batch arrival pattern. Figure
2 shows the assumed arrival pattern for damage assessments in Mataram. In this scenario, 30%
of reports arrive immediately, 40% after two months, and the remaining 30% after four months.
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Figure 2 Damaged Houses Arrival in Mataram: The blue line represents the cumulative damage
reports, with red dashed lines indicating the batch arrival times.
Building State Tracking. The simulator tracks each building through three phases: the
administrative delay, active construction, and completion. These timestamps, combined with
damage levels and regional assignments, enable detailed analysis of recovery progress and
contractor utilization.
Performance Metrics. Our simulator computes three indicators to evaluate the accuracy of
different scheduling strategies:
Root Mean Squared Error (RMSE):



RMSE = j(%)zwi— )2 v

where J; is the predicted completion ratio on day i, and y; is the observed completion

ratio on day i. This metric quantifies how closely the simulated reconstruction progress

matches the actual data, with lower values indicating better alignment.

Absolute Error:

AE(t) = |9 — vl (2)
which measures the instantaneous deviation of the predicted completion ratio from the

actual ratio at each time t.

Completion Ratio Over Time:The simulator tracks the fraction of houses completed on

each day by calculating a cumulative sum of finished repairs. Although this ratio is not a

standalone metric, it forms the basis for RMSE and Absolute Error calculations. Visual

comparisons of predicted vs. actual completion trajectories also provide a qualitative
assessment of how well each scheduling policy replicates the real-world reconstruction
pace.

The RMSE provides an overall measure of how well the simulation replicates observed
data, while the Absolute Error metrics give a more granular look at deviations at specific points
in time. Together, they help identify which scheduling strategies best capture the dynamics of
post-disaster recovery.

DATA SOURCE

Study Area. Figure 3 presents a map of our study area, which encompasses seven administrative
regions of Lombok and Sumbawa in West Nusa Tenggara, Indonesia. The map is generated
using OpenStreetMap data via OSMnx and reprojected into the Web Mercator projection
(EPSG:3857) to ensure compatibility with standard online mapping services and the CartoDB
Positron basemap. Dashed lines indicate the boundaries of each region, while red annotations
display their corresponding English names (e.g., Mataram and Sumbawa).

Our analysis uses data from the 2018 Lombok earthquakes. Initial damage assessments
were completed by Indonesia's National Disaster Management Authority (BNPB) in September
2018, and daily reconstruction progress was tracked by the Regional Disaster Management
Authority of West Nusa Tenggara (BPBD NTB) from October 2018 to March 2020.

Study Arca: Regions in Lombok and Sumbawa, Indonesia

Figure 3: Map of the study area depicting the administrative regions in Lombok and Sumbawa,
Indonesia. The dashed boundaries represent the regions, and the red labels indicate the
English names of the regions. The grayscale basemap (CartoDB Positron) provides
geographic context.
Regional Classification. The affected area comprises seven administrative regions:
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Damage Distribution and Contractor Availability. Table 1 presents the distribution of

damaged houses by region and severity. Table 2 shows contractor availability by region.
Table 1: Distribution of Damaged Houses by Region (r) and Severity Level (d)

Region Major Moderate Minor Total

Mataram 1,345 3,672 9,500 14,517
West Lombok 14,069 13,556 45,218 72,843
North Lombok 42,049 4,772 8,889 55,710
Central Lombok 4,483 3,096 16,639 24,218
East Lombok 10,104 4,657 12,209 26,970
West Sumbawa 1,283 3,803 13,078 18,164
Sumbawa 1,374 2,756 9,652 13,782
Total 74,707 36,312 115,185 226,204

"

Table 2: Total Available Construction Contractors by Region (7)

Region Number of Contractors (Cr)

Mataram 9917

West Lombok 45,028

North Lombok 22,996

Central Lombok 15,048

East Lombok 15,404

West Sumbawa 10,200

Sumbawa 10,360

Total 128,953

Housing damage levels are defined as:
0 Minor damage (partial structural damage, repairable) 4)
d = { 1 Moderate damage (significant damage, temporarily uninhabitable)

2 Major damage (severe damage, complete reconstruction required)
Processing Time Parameters. Based on observations from the Lombok reconstruction program
Alisjahbana and Kiremidjian (2021), we model construction and pre-construction processing
times using lognormal distributions.
Construction Duration Parameters. Construction times (7.) are modeled as:
1. ~ LogNormal(In(p.(d)), Bc) (5)
with:



30 days for d = 0 (minor) (6)
Uc(d) = {40 days for d = 1 (moderate) and . = 0.4.
50 days for d = 2 (major)
Pre-construction Processing Parameters. Administrative delays (7,,) are modeled as:

7,~ LogNormal(In (,up (d)),ﬁp (d)) (7)

with:
275 days for d = 0 (minor) (8)
t,(d) = {300 days ford =1 (moderate) and B,(d) = 0.3.
225days for d = 2 (major)
These parameters capture average behavior observed in the Lombok data, though local variations
may occur.

RESULTS
The results show that dynamic scheduling generally produces predictions closer to the actual
recovery timelines than static scheduling. In five of the seven regions (Mataram, North Lombok,
Central Lombok, East Lombok, and West Sumbawa), dynamic methods yield lower RMSE. In
two regions (West Lombok and Sumbawa), static scheduling slightly outperforms dynamic
methods.

Table 3: RMSE by Region and Scheduling Strategy. Lower RMSE values indicate closer to

recorded values. Multiple bold values indicate that no single strategy consistently
outperforms the other one.

Region Static LJF Static SJF | Dynamic LJF Dynamic SJF
Mataram 0.1667 0.1577 0.1125 0.1101
West Lombok  0.0772 0.0719 0.0931 0.0960
North Lombok  0.1572 0.1247 0.1256 0.1140
Central Lombok 0.1360 0.1285 0.1104 0.1083
East Lombok 0.1227 0.1008 0.0851 0.0797
West Sumbawa  0.1078 0.1045 0.1006 0.1002
Sumbawa 0.1165 0.1247 0.1943 0.1957
DISCUSSION

Our results across the seven regions indicate that while dynamic scheduling generally aligns
better with observed recovery data, no single strategy consistently outperforms across all
contexts. In certain regions or phases of recovery, static approaches may perform equally well or
even better than dynamic methods. To illustrate these dynamics, we highlight the example of
Mataram in Figures 4 and 5, while noting that similar patterns appear elsewhere, though with
different timing and magnitude.
Table 4: Regional Resource and Damage Profile. Bolded values highlight regions where static
methods perform better. These regions have higher resource ratios (p > 0.5) and lower
major damage percentages (6 < 30%), conditions that may favor static scheduling.

Region Resource Ratio (p) Major Damage (6)
Mataram 0.68 9.3% (1,345)




Region Resource Ratio (p) Major Damage (6)

West Lombok  0.62 19.3% (14,069)
North Lombok  0.41 75.5% (42,049)
Central Lombok 0.45 18.5% (4,483)
East Lombok 0.51 37.5% (10,104)
West Sumbawa 0.55 7.1% (1,283)
Sumbawa 0.48 10.0% (1,374)

Table 4 summarizes the regional resource ratios (p) and major damage percentages ()
across the study area. While West Lombok and Sumbawa are the only regions where static
scheduling outperformed dynamic methods, this outcome should not be overinterpreted. These
regions did not have the highest contractor availability or the lowest damage levels. Instead, their
relatively balanced conditions—moderate demand paired with adequate resources—meant that
static scheduling was sufficient to maintain a stable reconstruction pace.

In contrast, regions like North Lombok, which experienced widespread severe damage
and more limited resources, benefited significantly from dynamic scheduling. The flexibility to
reprioritize tasks as new damage reports arrived helped improve alignment with observed
recovery patterns.

These findings reveal that strategy effectiveness cannot be determined solely by resource
ratio or damage severity. Instead, outcomes depend on the interaction of multiple factors—such
as the timing of report arrivals, variability in task durations, and how resources are allocated over
time. Relying only on static indicators oversimplifies what is, in practice, a highly dynamic
process.

Hlustrative Example: Mataram Region
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Figure 4: Recovery trajectory in Mataram as an example region using Longest Job First (LJF)
strategy. Although the static method sometimes aligns with observed data early on, the
dynamic approach shows closer agreement overall. Both methods lag behind actual
recovery after day 500, indicating potential benefits of adaptive scheduling.
Figure 4 shows the recovery trajectories in Mataram under static and dynamic scheduling
compared to observed data. While the static method aligns better early on (before day 350), the
dynamic approach better captures the later recovery trend. Both underestimate recovery after day
500, likely due to unmodeled external factors such as policy shifts or sudden resource
infusions—highlighting the limitations of fixed strategies.
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Figure 5: Absolute error analysis in Mataram. The highlighted period (days 350-400) shows a
peak in error for both scheduling methods, underscoring the need for adaptive policies
that can respond to changing recovery dynamics.

Figure S presents the absolute error over time. A clear spike between days 350—400
marks a period where both methods deviate significantly from observed outcomes. Although
dynamic scheduling yields a lower RMSE overall, this error window reinforces that no single
strategy performs best at all times.

These patterns—Ilate-stage underestimation and mid-stage error spikes—also appear
in other regions, including North and East Lombok, with varying timing and magnitude.

Need for Adaptive Strategies. These findings emphasize that fixed scheduling rules—whether
static or dynamic—are often insufficient. To respond effectively to shifting conditions, adaptive
strategies are needed. Reinforcement learning approaches, such as Deep Double Q-Networks
(DDQN), offer a promising path forward by allowing real-time adjustment between strategies
like LJF and SJF based on current recovery dynamics.

FUTURE WORK

Dynamic Contractor Management. Future research should focus on developing methods to
manage fluctuations in contractor availability during reconstruction. This may include systems
that account for gradual workforce changes or sudden contractor dropouts, as well as inter-
regional sharing of contractors.

Real-time Strategy Adaptation. Another promising direction is the application of
reinforcement learning techniques, such as Deep Double Q-Networks (DDQN), to develop
adaptive scheduling systems. These systems could switch between scheduling strategies in real
time, potentially leading to hybrid approaches that outperform fixed strategies.
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