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ABSTRACT 
Post-earthquake housing reconstruction faces a key challenge: damage assessments are reported 
gradually over time, while conventional scheduling methods assume that complete information is 
available at the start. This discrepancy can lead to inefficient resource allocation and delays in 
recovery. We introduce PyRebuild, a Python-based simulation framework that models the 
temporal dynamics of damage report arrivals and dynamically allocates reconstruction resources. 
The framework tests three scheduling algorithms (Longest Job First, Shortest Job First, and 
random assignment) under static and dynamic conditions. Using 2018 Lombok earthquake data, 
we find dynamic scheduling yields lower Root Mean Square Error between predicted and 
observed recovery timelines in five of seven regions, while static methods perform marginally 
better in two regions. Results indicate optimal scheduling depends on local damage patterns, 
highlighting the need for adaptive post-disaster reconstruction strategies. 
 
INTRODUCTION 
Rebuilding after an earthquake is challenging because damage assessments are received 
gradually over weeks or months rather than all at once. Traditional scheduling methods assume 
that complete information is available immediately, which may lead to suboptimal resource 
allocation and delays in recovery. This issue is particularly important since housing 
reconstruction represents about 50% of total disaster-related losses (Comerio 2014). 
Resource Allocation Fundamentals. Resource allocation methods in post-disaster 
reconstruction can be divided into static and dynamic approaches Lawrence and Sewell (1997). 
Static methods assume that all damage data is available at the outset and assign contractors 
accordingly, whereas dynamic methods update these assignments as new damage reports arrive. 
Dynamic scheduling is vital in real disasters, where both damage information and resource 
availability evolve over time. 
Static vs. Dynamic Approaches. Traditional planning tools, such as HAZUS, illustrate the 
limitations of static methods Federal Emergency Management Agency (2010). While static 
scheduling is straightforward, it lacks flexibility when new reports emerge. In contrast, dynamic 
scheduling updates priorities in real time, an approach that has proven effective in domains such 
as manufacturing and healthcare Pinedo (2012); Green et al. (2004). Recent studies indicate that 
prioritizing major damage repairs using dynamic methods can lead to improved recovery 
outcomes Alisjahbana and Kiremidjian (2021); Wang et al. (2023). 
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Dynamic Scheduling and Demand-Supply Perspectives. Frameworks like Re-CoDeS and iRe-
CoDeS have applied a demand-supply approach to balance repair needs with available resources 
Rahman et al. (2018); Suryanto et al. (2022). In PyRebuild, we simulate the gradual arrival of 
damage assessments and the dynamic allocation of contractors, building on these demand-supply 
concepts to support adaptive scheduling strategies. This review of existing literature underscores 
the potential of adaptive approaches and motivates our comparison of static and dynamic 
methods as a step toward more sophisticated, real-time policy adaptation. 

Frameworks such as iRe-CoDeS (Suryanto et al. 2022) and Re-CoDeS (Rahman et al.  
2018) adopt a demand-supply approach to quantify disaster resilience by modeling recovery as a 
time-stepping process, where the interaction between resource demand and available supply is  
assessed at each step. While iRe-CoDeS evaluates community recovery and Re-CoDeS  
aggregates resilience indicators for civil infrastructure, both frameworks assume that the  
necessary data are provided in an aggregated form rather than arriving incrementally. In contrast,  
PyRebuild extends these approaches by simulating the gradual, phased arrival of damage  
assessments and dynamically allocating reconstruction resources at each time step. 

In this paper, we introduce PyRebuild, a simulator that updates scheduling priorities as 
new damage reports are received. We compare static scheduling (assuming complete data) with 
dynamic scheduling (updating as data arrives) to assess their impact on reconstruction timeline 
predictions. Our research framework is designed to simulate recorded recovery trajectories as 
accurately as possible, thereby providing a benchmark for evaluating scheduling strategies. By 
calibrating our simulation with real-world data, we can quantify discrepancies between simulated 
and observed outcomes. These insights lay the groundwork for future enhancements, particularly 
through the incorporation of reinforcement learning techniques to dynamically adapt scheduling 
policies in real time. 
 
PROBLEM SETTING 
The reconstruction problem after an earthquake requires that contractors be assigned as damage  
assessments are reported. Unlike static methods—which assume complete data and do not update  
assignments when new reports arrive—our approach continuously adjusts the queue based on  
incoming information (i.e., quantity and severity of incoming houses). 
Input Data and Parameters. Let 𝑖 ∈ ℕ index the set of damaged buildings. Each building is 

represented by the vector (𝑑, 𝑟, 𝑡) where: 
• 𝑑 ∈ {0,1,2} is the damage state (0 = minor, 1 = moderate, 2 = major), 
• 𝑟 ∈ {1,...,𝑅} is the region identifier (with	𝑅 being the total number of regions), 
• 𝑡 is the time at which the damage assessment is reported. 
We model the damage arrivals using a lognormal distribution. We use parameters μ = 100 

days and σ = 0.3 to capture this skewed behavior, which is supported by previous works. 
Damage reporting times are shaped by factors like severity, accessibility, and administrative 
delays, which together create a right-skewed pattern well-represented by a lognormal 
distribution—where most reports arrive early, and a few are substantially delayed.  
Resource Constraints. Each region 𝒓 has a fixed pool of contractors 𝐶!, Each contractor works 
on one building at a time, and a pre-construction administrative phase must be completed before 
construction begins. Once assigned, a contractor remains engaged until the building is fully 
repaired. The total number of contractors 𝐶!remains constant throughout the process. 
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Dynamic Event Processing and Queue Management. For each region 𝑟, a priority queue 𝑄𝑟 
manages contractor assignments. This queue is updated based on the selected scheduling policy 
as new damage assessments are processed. 
Batch Arrival. Our simulation assumes that damage assessments are reported in three batches, 
with a 30–40–30 split (i.e., 30% at t=0, 40% at t=60 days, and 30% at t=120 days). This 
assumption is guided by operational recommendations such as FEMA's Preliminary Damage 
Assessment Guide and studies on rapid damage assessment workflows. Although actual 
reporting may vary due to local practices or event severity, this split serves as a useful baseline. 
Likewise, the chosen lognormal parameters reflect average behavior observed in the Lombok 
data, though local differences may exist. Future work could refine these parameters for specific 
regions. 
Dynamic Priority Updates and Contractor Allocation. The system recalculates priorities for 
buildings in 𝑄𝑟 at fixed intervals or when repairs are completed, reordering the queue. When a 
contractor becomes available, the highest-priority building is selected for repair. 
 
PYREBUILD SIMULATOR 
PyRebuild is a discrete event simulation tool that dynamically allocates contractors during post- 
disaster reconstruction. Built on the SimPy framework, the simulator updates contractor  
assignments as new damage assessments are reported. 
Architecture Overview. The simulator consists of three main components: 

• Region Management: The Region class uses SimPy's PriorityResource to manage a fixed 
pool of contractors (𝐶𝑟) and track repair completion times. 

• Building Recovery Process: Each building undergoes a pre-construction administrative 
delay and an active construction phase, both modeled using lognormal distributions with 
damage-specific parameters. 

• Policy Implementation: The simulator implements three scheduling strategies—Longest 
Job First (LJF), Shortest Job First (SJF), and Random Assignment—and tests them under 
static and dynamic conditions. 

Processing Workflow 
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Figure 1 Flowchart of PyRebuild. The diagram illustrates PyRebuild's process from initial 
damage assessment through completion, including dynamic resource allocation and 

ongoing monitoring. 
Figure 1 illustrates the workflow in PyRebuild. The simulation begins by initializing key 
parameters—for instance, 100 damaged houses and a pool of 20 construction workers. 

In the static approach, all damage reports are assumed available at day 0. The simulator 
assigns contractors based on a predefined rule, such as Longest Job First (LJF) or Shortest Job 
First (SJF), and work proceeds accordingly. 

In the dynamic approach, damage reports arrive in batches: 30% on day 0, 40% at day 
60, and 30% at day 120. As new reports arrive and contractors become available, the system 
reprioritizes and assigns the next house based on the current scheduling policy. 

Each house goes through a pre-construction delay (administrative processing) and an 
active construction phase, both modeled using lognormal distributions. Once completed, the 
contractor is released to take on a new assignment. 

The simulation runs until all houses are completed or a time cap (e.g., 600 days) is 
reached. Throughout, performance is evaluated by comparing simulated recovery trajectories to 
observed data using metrics like RMSE. 
Batch Generation and Arrival Processing. For each region 𝑟, damaged buildings are divided 
into k batches. The first batch arrives at 𝑡 = 0, with subsequent batches arriving according to a 
lognormal distribution. Each batch is integrated into the priority queue 𝑄𝑟 with unique identifiers 
and recorded damage levels. 
Arrival Pattern. This session uses Mataram as an example to show batch arrival pattern. Figure 
2 shows the assumed arrival pattern for damage assessments in Mataram. In this scenario, 30% 
of reports arrive immediately, 40% after two months, and the remaining 30% after four months. 
 

 
Figure 2 Damaged Houses Arrival in Mataram: The blue line represents the cumulative damage 

reports, with red dashed lines indicating the batch arrival times. 
Building State Tracking. The simulator tracks each building through three phases: the 
administrative delay, active construction, and completion. These timestamps, combined with 
damage levels and regional assignments, enable detailed analysis of recovery progress and 
contractor utilization. 
Performance Metrics. Our simulator computes three indicators to evaluate the accuracy of 
different scheduling strategies: 

Root Mean Squared Error (RMSE): 
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𝑅𝑀𝑆𝐸	 = 	01
1
𝑁4𝛴	

(ŷ" −	𝑦")# 
(1) 

where 𝑦;" is the predicted completion ratio on day 𝑖, and 𝑦" is the observed completion 
ratio on day 𝑖. This metric quantifies how closely the simulated reconstruction progress 
matches the actual data, with lower values indicating better alignment. 
Absolute Error: 

𝐴𝐸(𝑡) = |𝑦;$ − 𝑦$|	 (2) 
which measures the instantaneous deviation of the predicted completion ratio from the 
actual ratio at each time 𝑡. 
Completion Ratio Over Time:The simulator tracks the fraction of houses completed on 
each day by calculating a cumulative sum of finished repairs. Although this ratio is not a 
standalone metric, it forms the basis for RMSE and Absolute Error calculations. Visual 
comparisons of predicted vs. actual completion trajectories also provide a qualitative 
assessment of how well each scheduling policy replicates the real-world reconstruction 
pace. 
The RMSE provides an overall measure of how well the simulation replicates observed 

data, while the Absolute Error metrics give a more granular look at deviations at specific points 
in time. Together, they help identify which scheduling strategies best capture the dynamics of 
post-disaster recovery. 
 
DATA SOURCE 
Study Area. Figure 3 presents a map of our study area, which encompasses seven administrative  
regions of Lombok and Sumbawa in West Nusa Tenggara, Indonesia. The map is generated 
using OpenStreetMap data via OSMnx and reprojected into the Web Mercator projection 
(EPSG:3857) to ensure compatibility with standard online mapping services and the CartoDB 
Positron basemap. Dashed lines indicate the boundaries of each region, while red annotations 
display their corresponding English names (e.g., Mataram and Sumbawa). 

Our analysis uses data from the 2018 Lombok earthquakes. Initial damage assessments  
were completed by Indonesia's National Disaster Management Authority (BNPB) in September 
2018, and daily reconstruction progress was tracked by the Regional Disaster Management 
Authority of West Nusa Tenggara (BPBD NTB) from October 2018 to March 2020. 
 

 
Figure 3: Map of the study area depicting the administrative regions in Lombok and Sumbawa, 

Indonesia. The dashed boundaries represent the regions, and the red labels indicate the 
English names of the regions. The grayscale basemap (CartoDB Positron) provides 

geographic context. 
Regional Classification. The affected area comprises seven administrative regions: 
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(3) 

Damage Distribution and Contractor Availability. Table 1 presents the distribution of 
damaged houses by region and severity. Table 2 shows contractor availability by region. 

Table 1: Distribution of Damaged Houses by Region (𝑟) and Severity Level (𝑑) 
Region Major Moderate Minor Total 
Mataram 1,345 3,672 9,500 14,517 
West Lombok 14,069 13,556 45,218 72,843 
North Lombok 42,049 4,772 8,889 55,710 
Central Lombok 4,483 3,096 16,639 24,218 
East Lombok 10,104 4,657 12,209 26,970 
West Sumbawa 1,283 3,803 13,078 18,164 
Sumbawa 1,374 2,756 9,652 13,782 
Total 74,707 36,312 115,185 226,204 

 
Table 2: Total Available Construction Contractors by Region (𝑟) 

Region Number of Contractors (𝑪𝒓) 
Mataram 9,917 
West Lombok 45,028 
North Lombok 22,996 
Central Lombok 15,048 
East Lombok 15,404 
West Sumbawa 10,200 
Sumbawa 10,360 
Total 128,953 

Housing damage levels are defined as: 

𝑑 = 	a
0	 Minor	damage	(partial	structural	damage, repairable)	
	1	Moderate	damage	(significant	damage, temporarily	uninhabitable)
2	Major	damage	(severe	damage, complete	reconstruction	required)

m 
(4) 

Processing Time Parameters. Based on observations from the Lombok reconstruction program 
Alisjahbana and Kiremidjian (2021), we model construction and pre-construction processing 
times using lognormal distributions. 
Construction Duration Parameters. Construction times (𝜏%) are modeled as: 

𝜏% 	~	𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(lnv𝜇%(𝑑)x , 𝛽%) (5) 
with: 
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𝜇%(𝑑) = 	a
30	𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 0	(𝑚𝑖𝑛𝑜𝑟)
40		𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 1	(𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒)		𝑎𝑛𝑑	𝛽& = 	0.4.
50		𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 2	(𝑚𝑎𝑗𝑜𝑟)

m 
(6) 

Pre-construction Processing Parameters. Administrative delays (𝜏') are modeled as: 
𝜏'~	𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln �𝜇'(𝑑)� , 𝛽'(𝑑)) 

 

(7) 

with: 

𝜇'(𝑑) = 	a
275	𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 0	(𝑚𝑖𝑛𝑜𝑟)
300		𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 1	(𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒)	𝑎𝑛𝑑	𝛽'(𝑑) = 0.3.
225	𝑑𝑎𝑦𝑠	𝑓𝑜𝑟	𝑑 = 2	(𝑚𝑎𝑗𝑜𝑟)

m 
(8) 

These parameters capture average behavior observed in the Lombok data, though local variations  
may occur. 
 
RESULTS 
The results show that dynamic scheduling generally produces predictions closer to the actual 
recovery timelines than static scheduling. In five of the seven regions (Mataram, North Lombok, 
Central Lombok, East Lombok, and West Sumbawa), dynamic methods yield lower RMSE. In 
two regions (West Lombok and Sumbawa), static scheduling slightly outperforms dynamic 
methods. 

Table 3: RMSE by Region and Scheduling Strategy. Lower RMSE values indicate closer to 
recorded values. Multiple bold values indicate that no single strategy consistently 

outperforms the other one. 
Region Static LJF Static SJF Dynamic LJF Dynamic SJF 
Mataram 0.1667 0.1577 0.1125 0.1101 
West Lombok 0.0772 0.0719 0.0931 0.0960 
North Lombok 0.1572 0.1247 0.1256 0.1140 
Central Lombok 0.1360 0.1285 0.1104 0.1083 
East Lombok 0.1227 0.1008 0.0851 0.0797 
West Sumbawa 0.1078 0.1045 0.1006 0.1002 
Sumbawa 0.1165 0.1247 0.1943 0.1957 

 
DISCUSSION 
Our results across the seven regions indicate that while dynamic scheduling generally aligns 
better with observed recovery data, no single strategy consistently outperforms across all 
contexts. In certain regions or phases of recovery, static approaches may perform equally well or 
even better than dynamic methods. To illustrate these dynamics, we highlight the example of 
Mataram in Figures 4 and 5, while noting that similar patterns appear elsewhere, though with 
different timing and magnitude. 

Table 4: Regional Resource and Damage Profile. Bolded values highlight regions where static 
methods perform better. These regions have higher resource ratios (𝜌 > 0.5) and lower 

major damage percentages (𝛿 < 30%), conditions that may favor static scheduling. 
Region Resource Ratio (𝝆) Major Damage (𝜹) 
Mataram 0.68 9.3% (1,345) 
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Region Resource Ratio (𝝆) Major Damage (𝜹) 
West Lombok 0.62 19.3% (14,069) 
North Lombok 0.41 75.5% (42,049) 
Central Lombok 0.45 18.5% (4,483) 
East Lombok 0.51 37.5% (10,104) 
West Sumbawa 0.55 7.1% (1,283) 
Sumbawa 0.48 10.0% (1,374) 

Table 4 summarizes the regional resource ratios (ρ) and major damage percentages (δ) 
across the study area. While West Lombok and Sumbawa are the only regions where static 
scheduling outperformed dynamic methods, this outcome should not be overinterpreted. These 
regions did not have the highest contractor availability or the lowest damage levels. Instead, their 
relatively balanced conditions—moderate demand paired with adequate resources—meant that 
static scheduling was sufficient to maintain a stable reconstruction pace. 

In contrast, regions like North Lombok, which experienced widespread severe damage 
and more limited resources, benefited significantly from dynamic scheduling. The flexibility to 
reprioritize tasks as new damage reports arrived helped improve alignment with observed 
recovery patterns. 

These findings reveal that strategy effectiveness cannot be determined solely by resource 
ratio or damage severity. Instead, outcomes depend on the interaction of multiple factors—such 
as the timing of report arrivals, variability in task durations, and how resources are allocated over 
time. Relying only on static indicators oversimplifies what is, in practice, a highly dynamic 
process. 
Illustrative Example: Mataram Region 

 
Figure 4: Recovery trajectory in Mataram as an example region using Longest Job First (LJF) 

strategy. Although the static method sometimes aligns with observed data early on, the 
dynamic approach shows closer agreement overall. Both methods lag behind actual 

recovery after day 500, indicating potential benefits of adaptive scheduling. 
Figure 4 shows the recovery trajectories in Mataram under static and dynamic scheduling 

compared to observed data. While the static method aligns better early on (before day 350), the 
dynamic approach better captures the later recovery trend. Both underestimate recovery after day 
500, likely due to unmodeled external factors such as policy shifts or sudden resource 
infusions—highlighting the limitations of fixed strategies. 
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Figure 5: Absolute error analysis in Mataram. The highlighted period (days 350-400) shows a 

peak in error for both scheduling methods, underscoring the need for adaptive policies 
that can respond to changing recovery dynamics. 

Figure 5 presents the absolute error over time. A clear spike between days 350–400 
marks a period where both methods deviate significantly from observed outcomes. Although 
dynamic scheduling yields a lower RMSE overall, this error window reinforces that no single 
strategy performs best at all times. 

These patterns—late-stage underestimation and mid-stage error spikes—also appear 
in other regions, including North and East Lombok, with varying timing and magnitude. 
Need for Adaptive Strategies. These findings emphasize that fixed scheduling rules—whether 
static or dynamic—are often insufficient. To respond effectively to shifting conditions, adaptive 
strategies are needed. Reinforcement learning approaches, such as Deep Double Q-Networks 
(DDQN), offer a promising path forward by allowing real-time adjustment between strategies 
like LJF and SJF based on current recovery dynamics. 
FUTURE WORK 
Dynamic Contractor Management. Future research should focus on developing methods to 
manage fluctuations in contractor availability during reconstruction. This may include systems 
that account for gradual workforce changes or sudden contractor dropouts, as well as inter-
regional sharing of contractors. 
Real-time Strategy Adaptation. Another promising direction is the application of 
reinforcement learning techniques, such as Deep Double Q-Networks (DDQN), to develop 
adaptive scheduling systems. These systems could switch between scheduling strategies in real 
time, potentially leading to hybrid approaches that outperform fixed strategies. 
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